Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 109
Filter
1.
ERJ Open Res ; 10(1)2024 Jan.
Article in English | MEDLINE | ID: mdl-38375425

ABSTRACT

Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial pneumonia marked by progressive lung fibrosis and a poor prognosis. Recent studies have highlighted the potential role of infection in the pathogenesis of IPF, and a prior association of the HLA-DQB1 gene with idiopathic fibrotic interstitial pneumonia (including IPF) has been reported. Owing to the important role that the human leukocyte antigen (HLA) region plays in the immune response, here we evaluated if HLA genetic variation was associated specifically with IPF risk. Methods: We performed a meta-analysis of associations of the HLA region with IPF risk in individuals of European ancestry from seven independent case-control studies of IPF (comprising 5159 cases and 27 459 controls, including a prior study of fibrotic interstitial pneumonia). Single nucleotide polymorphisms, classical HLA alleles and amino acids were analysed and signals meeting a region-wide association threshold of p<4.5×10-4 and a posterior probability of replication >90% were considered significant. We sought to replicate the previously reported HLA-DQB1 association in the subset of studies independent of the original report. Results: The meta-analysis of all seven studies identified four significant independent single nucleotide polymorphisms associated with IPF risk. However, none met the posterior probability for replication criterion. The HLA-DQB1 association was not replicated in the independent IPF studies. Conclusion: Variation in the HLA region was not consistently associated with risk in studies of IPF. However, this does not preclude the possibility that other genomic regions linked to the immune response may be involved in the aetiology of IPF.

2.
medRxiv ; 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38293162

ABSTRACT

Background: Idiopathic pulmonary fibrosis (IPF) is a chronic lung condition that is more prevalent in males than females. The reasons for this are not fully understood, with differing environmental exposures due to historically sex-biased occupations, or diagnostic bias, being possible explanations. To date, over 20 independent genetic variants have been identified to be associated with IPF susceptibility, but these have been discovered when combining males and females. Our aim was to test for the presence of sex-specific associations with IPF susceptibility and assess whether there is a need to consider sex-specific effects when evaluating genetic risk in clinical prediction models for IPF. Methods: We performed genome-wide single nucleotide polymorphism (SNP)-by-sex interaction studies of IPF risk in six independent IPF case-control studies and combined them using inverse-variance weighted fixed effect meta-analysis. In total, 4,561 cases (1,280 females and 2,281 males) and 23,500 controls (8,360 females and 14,528 males) of European genetic ancestry were analysed. We used polygenic risk scores (PRS) to assess differences in genetic risk prediction between males and females. Findings: Three independent genetic association signals were identified. All showed a consistent direction of effect across all individual IPF studies and an opposite direction of effect in IPF susceptibility between females and males. None had been previously identified in IPF susceptibility genome-wide association studies (GWAS). The predictive accuracy of the PRSs were similar between males and females, regardless of whether using combined or sex-specific GWAS results. Interpretation: We prioritised three genetic variants whose effect on IPF risk may be modified by sex, however these require further study. We found no evidence that the predictive accuracy of common SNP-based PRSs varies significantly between males and females.

4.
Respir Res ; 24(1): 287, 2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37978501

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a heterogeneous disease that is pathologically characterized by areas of normal-appearing lung parenchyma, active fibrosis (transition zones including fibroblastic foci) and dense fibrosis. Defining transcriptional differences between these pathologically heterogeneous regions of the IPF lung is critical to understanding the distribution and extent of fibrotic lung disease and identifying potential therapeutic targets. Application of a spatial transcriptomics platform would provide more detailed spatial resolution of transcriptional signals compared to previous single cell or bulk RNA-Seq studies. METHODS: We performed spatial transcriptomics using GeoMx Nanostring Digital Spatial Profiling on formalin-fixed paraffin-embedded (FFPE) tissue from 32 IPF and 12 control subjects and identified 231 regions of interest (ROIs). We compared normal-appearing lung parenchyma and airways between IPF and controls with histologically normal lung tissue, as well as histologically distinct regions within IPF (normal-appearing lung parenchyma, transition zones containing fibroblastic foci, areas of dense fibrosis, and honeycomb epithelium metaplasia). RESULTS: We identified 254 differentially expressed genes (DEGs) between IPF and controls in histologically normal-appearing regions of lung parenchyma; pathway analysis identified disease processes such as EIF2 signaling (important for cap-dependent mRNA translation), epithelial adherens junction signaling, HIF1α signaling, and integrin signaling. Within IPF, we identified 173 DEGs between transition and normal-appearing lung parenchyma and 198 DEGs between dense fibrosis and normal lung parenchyma; pathways dysregulated in both transition and dense fibrotic areas include EIF2 signaling pathway activation (upstream of endoplasmic reticulum (ER) stress proteins ATF4 and CHOP) and wound healing signaling pathway deactivation. Through cell deconvolution of transcriptome data and immunofluorescence staining, we confirmed loss of alveolar parenchymal signals (AGER, SFTPB, SFTPC), gain of secretory cell markers (SCGB3A2, MUC5B) as well as dysregulation of the upstream regulator ATF4, in histologically normal-appearing tissue in IPF. CONCLUSIONS: Our findings demonstrate that histologically normal-appearing regions from the IPF lung are transcriptionally distinct when compared to similar lung tissue from controls with histologically normal lung tissue, and that transition zones and areas of dense fibrosis within the IPF lung demonstrate activation of ER stress and deactivation of wound healing pathways.


Subject(s)
Eukaryotic Initiation Factor-2 , Idiopathic Pulmonary Fibrosis , Humans , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Idiopathic Pulmonary Fibrosis/metabolism , Lung/metabolism , Transcriptome , Fibrosis
5.
medRxiv ; 2023 Sep 23.
Article in English | MEDLINE | ID: mdl-37790375

ABSTRACT

Background: Indoor and outdoor air pollution levels are associated with poor asthma outcomes in children. However, few studies have evaluated whether breathing zone pollutant levels associate with asthma outcomes. Objective: Determine breathing zone exposure levels of NO 2 , O 3 , total PM 10 and PM 10 constituents among children with exacerbation-prone asthma, and examine correspondence with in-home and community measurements and associations with outcomes. Methods: We assessed children's personal breathing zone exposures using wearable monitors. Personal exposures were compared to in-home and community measurements and tested for association with lung function, asthma control, and asthma exacerbations. Results: 81 children completed 219 monitoring sessions. Correlations between personal and community levels of PM 10 , NO 2 , and O 3 were poor, whereas personal PM 10 and NO 2 levels correlated with in-home measurements. However, in-home monitoring underdetected brown carbon (Personal:79%, Home:36.8%) and ETS (Personal:83.7%, Home:4.1%) personal exposures, and detected black carbon in participants without these personal exposures (Personal: 26.5%, Home: 96%). Personal exposures were not associated with lung function or asthma control. Children experiencing an asthma exacerbation within 60 days of personal exposure monitoring had 1.98, 2.21 and 2.04 times higher brown carbon (p<0.001), ETS (p=0.007), and endotoxin (p=0.012), respectively. These outcomes were not associated with community or in-home exposure levels. Conclusions: Monitoring pollutant levels in the breathing zone is essential to understand how exposures influence asthma outcomes, as agreement between personal and in-home monitors is limited. Inhaled exposure to PM 10 constituents modifies asthma exacerbation risk, suggesting efforts to limit these exposures among high-risk children may decrease their asthma burden. CLINICAL IMPLICATIONS: In-home and community monitoring of environmental pollutants may underestimate personal exposures. Levels of inhaled exposure to PM 10 constituents appear to strongly influence asthma exacerbation risk. Therefore, efforts should be made to mitigate these exposures. CAPSULE SUMMARY: Leveraging wearable, breathing-zone monitors, we show exposures to inhaled pollutants are poorly proxied by in-home and community monitors, among children with exacerbation-prone asthma. Inhaled exposure to multiple PM 10 constituents is associated with asthma exacerbation risk.

6.
medRxiv ; 2023 Jul 24.
Article in English | MEDLINE | ID: mdl-37546732

ABSTRACT

Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic interstitial pneumonia marked by progressive lung fibrosis and a poor prognosis. Recent studies have highlighted the potential role of infection in the pathogenesis of IPF and a prior association of the HLA-DQB1 gene with idiopathic fibrotic interstitial pneumonia (including IPF) has been reported. Due to the important role that the Human Leukocyte Antigen (HLA) region plays in the immune response, here we evaluated if HLA genetic variation was associated specifically with IPF risk. Methods: We performed a meta-analysis of associations of the HLA region with IPF risk in individuals of European ancestry from seven independent case-control studies of IPF (comprising a total of 5,159 cases and 27,459 controls, including the prior study of fibrotic interstitial pneumonia). Single nucleotide polymorphisms, classical HLA alleles and amino acids were analysed and signals meeting a region-wide association threshold p<4.5×10-4 and a posterior probability of replication >90% were considered significant. We sought to replicate the previously reported HLA-DQB1 association in the subset of studies independent of the original report. Results: The meta-analysis of all seven studies identified four significant independent single nucleotide polymorphisms associated with IPF risk. However, none met the posterior probability for replication criterion. The HLA-DQB1 association was not replicated in the independent IPF studies. Conclusion: Variation in the HLA region was not consistently associated with risk in studies of IPF. However, this does not preclude the possibility that other genomic regions linked to the immune response may be involved in the aetiology of IPF.

7.
Hum Mol Genet ; 32(16): 2669-2678, 2023 08 07.
Article in English | MEDLINE | ID: mdl-37399103

ABSTRACT

Sarcoidosis is a complex systemic disease. Our study aimed to (1) identify novel alleles associated with sarcoidosis susceptibility; (2) provide an in-depth evaluation of HLA alleles and sarcoidosis susceptibility and (3) integrate genetic and transcription data to identify risk loci that may more directly impact disease pathogenesis. We report a genome-wide association study of 1335 sarcoidosis cases and 1264 controls of European descent (EA) and investigate associated alleles in a study of African Americans (AA: 1487 cases and 1504 controls). The EA and AA cohort was recruited from multiple United States sites. HLA alleles were imputed and tested for association with sarcoidosis susceptibility. Expression quantitative locus and colocalization analysis were performed using a subset of subjects with transcriptome data. Forty-nine SNPs in the HLA region in HLA-DRA, -DRB9, -DRB5, -DQA1 and BRD2 genes were significantly associated with sarcoidosis susceptibility in EA, rs3129888 was also a risk variant for sarcoidosis in AA. Classical HLA alleles DRB1*0101, DQA1*0101 and DQB1*0501, which are highly correlated, were also associated with sarcoidosis. rs3135287 near HLA-DRA was associated with HLA-DRA expression in peripheral blood mononuclear cells and bronchoalveolar lavage from subjects and lung tissue and whole blood from GTEx. We identified six novel SNPs (out of the seven SNPs representing the 49 significant SNPs) and nine HLA alleles associated with sarcoidosis susceptibility in the largest EA population. We also replicated our findings in an AA population. Our study reiterates the potential role of antigen recognition and/or presentation HLA class II genes in sarcoidosis pathogenesis.


Subject(s)
Genome-Wide Association Study , Sarcoidosis , Humans , Genetic Predisposition to Disease , HLA-DR alpha-Chains/genetics , Leukocytes, Mononuclear , Sarcoidosis/genetics , HLA-DRB1 Chains/genetics , Alleles
8.
Am J Respir Crit Care Med ; 208(7): 791-801, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37523715

ABSTRACT

Rationale: In addition to rare genetic variants and the MUC5B locus, common genetic variants contribute to idiopathic pulmonary fibrosis (IPF) risk. The predictive power of common variants outside the MUC5B locus for IPF and interstitial lung abnormalities (ILAs) is unknown. Objectives: We tested the predictive value of IPF polygenic risk scores (PRSs) with and without the MUC5B region on IPF, ILA, and ILA progression. Methods: We developed PRSs that included (PRS-M5B) and excluded (PRS-NO-M5B) the MUC5B region (500-kb window around rs35705950-T) using an IPF genome-wide association study. We assessed PRS associations with area under the receiver operating characteristic curve (AUC) metrics for IPF, ILA, and ILA progression. Measurements and Main Results: We included 14,650 participants (1,970 IPF; 1,068 ILA) from six multi-ancestry population-based and case-control cohorts. In cases excluded from genome-wide association study, the PRS-M5B (odds ratio [OR] per SD of the score, 3.1; P = 7.1 × 10-95) and PRS-NO-M5B (OR per SD, 2.8; P = 2.5 × 10-87) were associated with IPF. Participants in the top PRS-NO-M5B quintile had ∼sevenfold odds for IPF compared with those in the first quintile. A clinical model predicted IPF (AUC, 0.61); rs35705950-T and PRS-NO-M5B demonstrated higher AUCs (0.73 and 0.7, respectively), and adding both genetic predictors to a clinical model yielded the highest performance (AUC, 0.81). The PRS-NO-M5B was associated with ILA (OR, 1.25) and ILA progression (OR, 1.16) in European ancestry participants. Conclusions: A common genetic variant risk score complements the MUC5B variant to identify individuals at high risk of interstitial lung abnormalities and pulmonary fibrosis.


Subject(s)
Genome-Wide Association Study , Idiopathic Pulmonary Fibrosis , Humans , Idiopathic Pulmonary Fibrosis/genetics , Risk Factors , Lung , Mucin-5B/genetics , Genetic Predisposition to Disease
9.
Ann Hum Genet ; 87(4): 184-195, 2023 07.
Article in English | MEDLINE | ID: mdl-37221924

ABSTRACT

Aggregate tests of rare variants are often employed to identify associated regions compared to sequentially testing each individual variant. When an aggregate test is significant, it is of interest to identify which rare variants are "driving" the association. We recently developed the rare variant influential filtering tool (RIFT) to identify influential rare variants and showed RIFT had higher true positive rates compared to other published methods. Here we use importance measures from the standard random forest (RF) and variable importance weighted RF (vi-RF) to identify influential variants. For very rare variants (minor allele frequency [MAF] < 0.001), the vi-RF:Accuracy method had the highest median true positive rate (TPR = 0.24; interquartile range [IQR]: 0.13, 0.42) followed by the RF:Accuracy method (TPR = 0.16; IQR: 0.07, 0.33) and both were superior to RIFT (TPR = 0.05; IQR: 0.02, 0.15). Among uncommon variants (0.001 < MAF < 0.03), the RF methods had higher true positive rates than RIFT while observing comparable false positive rates. Finally, we applied the RF methods to a targeted resequencing study in idiopathic pulmonary fibrosis (IPF), in which the vi-RF approach identified eight and seven variants in TERT and FAM13A, respectively. In summary, the vi-RF provides an improved, objective approach to identifying influential variants following a significant aggregate test. We have expanded our previously developed R package RIFT to include the random forest methods.


Subject(s)
Idiopathic Pulmonary Fibrosis , Random Forest , Humans , Gene Frequency , Sequence Analysis, DNA , GTPase-Activating Proteins
10.
Am J Respir Crit Care Med ; 207(5): 587-593, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36094461

ABSTRACT

Rationale: Relatives of patients with familial interstitial pneumonia (FIP) are at increased risk for pulmonary fibrosis and develop preclinical pulmonary fibrosis (PrePF). Objectives: We defined the incidence and progression of new-onset PrePF and its relationship to survival among first-degree relatives of families with FIP. Methods: This is a cohort study of family members with FIP who were initially screened with a health questionnaire and chest high-resolution computed tomography (HRCT) scan, and approximately 4 years later, the evaluation was repeated. A total of 493 asymptomatic first-degree relatives of patients with FIP were evaluated at baseline, and 296 (60%) of the original subjects participated in the subsequent evaluation. Measurements and Main Results: The median interval between HRCTs was 3.9 years (interquartile range, 3.5-4.4 yr). A total of 252 subjects who agreed to repeat evaluation were originally determined not to have PrePF at baseline; 16 developed PrePF. A conservative estimate of the annual incidence of PrePF is 1,023 per 100,000 person-years (95% confidence interval, 511-1,831 per 100,000 person-years). Of 44 subjects with PrePF at baseline, 38.4% subjects had worsening dyspnea compared with 15.4% of those without PrePF (P = 0.002). Usual interstitial pneumonia by HRCT (P < 0.0002) and baseline quantitative fibrosis score (P < 0.001) are also associated with worsening dyspnea. PrePF at the initial screen is associated with decreased survival (P < 0.001). Conclusions: The incidence of PrePF in this at-risk population is at least 100-fold higher than that reported for sporadic idiopathic pulmonary fibrosis (IPF). Although PrePF and IPF represent distinct entities, our study demonstrates that PrePF, like IPF, is progressive and associated with decreased survival.


Subject(s)
Idiopathic Pulmonary Fibrosis , Lung Diseases, Interstitial , Humans , Cohort Studies , Incidence , Dyspnea , Lung , Retrospective Studies
11.
Am J Respir Cell Mol Biol ; 67(6): 632-640, 2022 12.
Article in English | MEDLINE | ID: mdl-35972918

ABSTRACT

Chronic beryllium disease (CBD) is a Th1 granulomatous lung disease preceded by sensitization to beryllium (BeS). We profiled the methylome, transcriptome, and selected proteins in the lung to identify molecular signatures and networks associated with BeS and CBD. BAL cell DNA and RNA were profiled using microarrays from CBD (n = 30), BeS (n = 30), and control subjects (n = 12). BAL fluid proteins were measured using Olink Immune Response Panel proteins from CBD (n = 22) and BeS (n = 22) subjects. Linear models identified features associated with CBD, adjusting for covariation and batch effects. Multiomic integration methods identified correlated features between datasets. We identified 1,546 differentially expressed genes in CBD versus control subjects and 204 in CBD versus BeS. Of the 101 shared transcripts, 24 have significant cis relationships between gene expression and DNA methylation, assessed using expression quantitative trait methylation analysis, including genes not previously identified in CBD. A multiomic model of top DNA methylation and gene expression features demonstrated that the first component separated CBD from other samples and the second component separated control subjects from remaining samples. The top features on component one were enriched for T-lymphocyte function, and the top features on component two were enriched for innate immune signaling. We identified six differentially abundant proteins in CBD versus BeS, with two (SIT1 and SH2D1A) selected as important RNA features in the multiomic model. Our integrated analysis of DNA methylation, gene expression, and proteins in the lung identified multiomic signatures of CBD that differentiated it from BeS and control subjects.


Subject(s)
Berylliosis , Humans , Berylliosis/genetics , T-Lymphocytes , Bronchoalveolar Lavage , Bronchoalveolar Lavage Fluid , Immunity, Innate/genetics , RNA , Chronic Disease
12.
Nat Hum Behav ; 6(11): 1577-1586, 2022 11.
Article in English | MEDLINE | ID: mdl-35927319

ABSTRACT

Common genetic variants explain less variation in complex phenotypes than inferred from family-based studies, and there is a debate on the source of this 'missing heritability'. We investigated the contribution of rare genetic variants to tobacco use with whole-genome sequences from up to 26,257 unrelated individuals of European ancestries and 11,743 individuals of African ancestries. Across four smoking traits, single-nucleotide-polymorphism-based heritability ([Formula: see text]) was estimated from 0.13 to 0.28 (s.e., 0.10-0.13) in European ancestries, with 35-74% of it attributable to rare variants with minor allele frequencies between 0.01% and 1%. These heritability estimates are 1.5-4 times higher than past estimates based on common variants alone and accounted for 60% to 100% of our pedigree-based estimates of narrow-sense heritability ([Formula: see text], 0.18-0.34). In the African ancestry samples, [Formula: see text] was estimated from 0.03 to 0.33 (s.e., 0.09-0.14) across the four smoking traits. These results suggest that rare variants are important contributors to the heritability of smoking.


Subject(s)
Genome-Wide Association Study , Polymorphism, Single Nucleotide , Gene Frequency , Polymorphism, Single Nucleotide/genetics , Phenotype , Smoking/genetics
13.
Respir Med ; 200: 106923, 2022.
Article in English | MEDLINE | ID: mdl-35932543

ABSTRACT

INTRODUCTION: Sarcoidosis is a granulomatous disorder thought to be caused by exposures in genetically susceptible individuals. This study investigated whether specific exposures were associated with different sarcoidosis phenotypes. METHODS: Extensive demographic, occupational and environmental exposure data was analyzed from subjects enrolled in the NHLBI Genomic Research in Alpha-1 Antitrypsin Deficiency and Sarcoidosis (GRADS) study. RESULTS: In patients with sarcoidosis, radiation exposure was significantly associated with an increased risk of cardiac sarcoidosis versus non-cardiac sarcoidosis. No exposures were significantly associated with pulmonary only disease versus extrapulmonary disease with or without pulmonary involvement, Scadding Stage II/III/IV versus Scadding Stage 0/I, acute or remitting disease versus non-acute or non-remitting disease, nor chronic versus non-chronic disease. Although not reaching statistically significance after adjustment for multiple comparisons, there were a number of exposures associated with specific disease phenotypes, including exposures where relationships to sarcoidosis have previously been described such as rural exposures and pesticide exposures. CONCLUSIONS: Radiation exposure may be a risk factor for cardiac sarcoidosis. Other exposures may also be associated with specific phenotypes and should be further explored. The study was limited by small groups of exposed subjects for individual exposures and multiple comparisons. The development of novel and innovative exposure assessment tools is needed.


Subject(s)
Lung Diseases , Occupational Exposure , Sarcoidosis , alpha 1-Antitrypsin Deficiency , Environmental Exposure/adverse effects , Genomics , Humans , Lung Diseases/complications , Occupational Exposure/adverse effects , Sarcoidosis/etiology , Sarcoidosis/genetics , alpha 1-Antitrypsin Deficiency/complications , alpha 1-Antitrypsin Deficiency/epidemiology , alpha 1-Antitrypsin Deficiency/genetics
14.
Am J Respir Crit Care Med ; 206(10): 1259-1270, 2022 11 15.
Article in English | MEDLINE | ID: mdl-35816432

ABSTRACT

Rationale: Common genetic variants have been associated with idiopathic pulmonary fibrosis (IPF). Objectives: To determine functional relevance of the 10 IPF-associated common genetic variants we previously identified. Methods: We performed expression quantitative trait loci (eQTL) and methylation quantitative trait loci (mQTL) mapping, followed by co-localization of eQTL and mQTL with genetic association signals and functional validation by luciferase reporter assays. Illumina multi-ethnic genotyping arrays, mRNA sequencing, and Illumina 850k methylation arrays were performed on lung tissue of participants with IPF (234 RNA and 345 DNA samples) and non-diseased controls (188 RNA and 202 DNA samples). Measurements and Main Results: Focusing on genetic variants within 10 IPF-associated genetic loci, we identified 27 eQTLs in controls and 24 eQTLs in cases (false-discovery-rate-adjusted P < 0.05). Among these signals, we identified associations of lead variants rs35705950 with expression of MUC5B and rs2076295 with expression of DSP in both cases and controls. mQTL analysis identified CpGs in gene bodies of MUC5B (cg17589883) and DSP (cg08964675) associated with the lead variants in these two loci. We also demonstrated strong co-localization of eQTL/mQTL and genetic signal in MUC5B (rs35705950) and DSP (rs2076295). Functional validation of the mQTL in MUC5B using luciferase reporter assays demonstrates that the CpG resides within a putative internal repressor element. Conclusions: We have established a relationship of the common IPF genetic risk variants rs35705950 and rs2076295 with respective changes in MUC5B and DSP expression and methylation. These results provide additional evidence that both MUC5B and DSP are involved in the etiology of IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Humans , DNA , DNA Methylation/genetics , Gene Expression , Genetic Predisposition to Disease/genetics , Idiopathic Pulmonary Fibrosis/genetics , Mucin-5B/genetics , Quantitative Trait Loci/genetics , RNA
16.
Diabetes ; 71(9): 2048-2057, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35724268

ABSTRACT

Longitudinal changes in gene expression during islet autoimmunity (IA) may provide insight into biological processes that explain progression to type 1 diabetes (T1D). We identified individuals from Diabetes Autoimmunity Study in the Young (DAISY) who developed IA, autoantibodies present on two or more visits. Illumina's NovaSeq 6000 was used to quantify gene expression in whole blood. With linear mixed models we tested for changes in expression after IA that differed across individuals who progressed to T1D (progressors) (n = 25), reverted to an autoantibody-negative stage (reverters) (n = 47), or maintained IA positivity but did not develop T1D (maintainers) (n = 66). Weighted gene coexpression network analysis was used to identify coexpression modules. Gene Ontology pathway analysis of the top 150 differentially expressed genes (nominal P < 0.01) identified significantly enriched pathways including leukocyte activation involved in immune response, innate immune response, and regulation of immune response. We identified a module of 14 coexpressed genes with roles in the innate immunity. The hub gene, LTF, is known to have immunomodulatory properties. Another gene within the module, CAMP, is potentially relevant based on its role in promoting ß-cell survival in a murine model. Overall, results provide evidence of alterations in expression of innate immune genes prior to onset of T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Islets of Langerhans , Animals , Autoantibodies , Autoimmunity/genetics , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2 , Disease Progression , Humans , Immunity, Innate/genetics , Islets of Langerhans/metabolism , Mice
17.
BMC Med Res Methodol ; 22(1): 153, 2022 05 28.
Article in English | MEDLINE | ID: mdl-35643435

ABSTRACT

BACKGROUND: As the cost of RNA-sequencing decreases, complex study designs, including paired, longitudinal, and other correlated designs, become increasingly feasible. These studies often include multiple hypotheses and thus multiple degree of freedom tests, or tests that evaluate multiple hypotheses jointly, are often useful for filtering the gene list to a set of interesting features for further exploration while controlling the false discovery rate. Though there are several methods which have been proposed for analyzing correlated RNA-sequencing data, there has been little research evaluating and comparing the performance of multiple degree of freedom tests across methods. METHODS: We evaluated 11 different methods for modelling correlated RNA-sequencing data by performing a simulation study to compare the false discovery rate, power, and model convergence rate across several hypothesis tests and sample size scenarios. We also applied each method to a real longitudinal RNA-sequencing dataset. RESULTS: Linear mixed modelling using transformed data had the best false discovery rate control while maintaining relatively high power. However, this method had high model non-convergence, particularly at small sample sizes. No method had high power at the lowest sample size. We found a mix of conservative and anti-conservative behavior across the other methods, which was influenced by the sample size and the hypothesis being evaluated. The patterns observed in the simulation study were largely replicated in the analysis of a longitudinal study including data from intensive care unit patients experiencing cardiogenic or septic shock. CONCLUSIONS: Multiple degree of freedom testing is a valuable tool in longitudinal and other correlated RNA-sequencing experiments. Of the methods that we investigated, linear mixed modelling had the best overall combination of power and false discovery rate control. Other methods may also be appropriate in some scenarios.


Subject(s)
RNA , Research Design , Humans , Longitudinal Studies , RNA/genetics , Sample Size , Sequence Analysis, RNA/methods
18.
PLoS One ; 17(5): e0267592, 2022.
Article in English | MEDLINE | ID: mdl-35511761

ABSTRACT

Inhaled antibiotics control chronic airway infection and maintain respiratory health in cystic fibrosis (CF). Given variation in patient responses to inhaled antibiotics, the ability to identify distinct responder phenotypes would facilitate the delivery of personalized care. Previously, a 10-gene panel was identified, measured directly from blood leukocytes, which predicted host response to intravenous antibiotic treatment during pulmonary exacerbations. In the current study, we tested whether the same panel predicted clinical response in subjects receiving a month of inhaled antibiotic therapy with aztreonam lysine (AZLI; Cayston®). A small cohort of CF subjects infected with Pseudomonas aeruginosa were enrolled at baseline health, prior to initiating one month's treatment with AZLI using the Altera® nebulizer system. Eighteen CF subjects underwent blood leukocyte gene panel measurements, sputum quantitative microbiology, spirometry, and C-reactive protein (CRP) measurement prior to onset and at completion of 4 weeks of AZLI therapy. Mean absolute improvement in percent predicted Forced Expiratory Volume in one second (ppFEV1) was 3%. Significant reductions in sputum bacterial colony counts were detected with treatment. CRP increased following treatment. While single genes within the panel did not change significantly following treatment, the analysis of multigene panel data demonstrated that HCA112 gene predicted ppFEV1 improvement. Hierarchical clustering based on gene expression yielded two distinctive molecular clusters before and after AZLI therapy. In conclusion, peripheral blood leukocyte genes quantifying inflammation are associated with responses to inhaled antibiotic therapy. Molecular quantification of systemic inflammation may indicate subgroups of CF subjects with variations in underlying inflammation and with variable clinical responses to inhaled antibiotics. Given the size limitation of the study, larger studies are needed in order to evaluate whether molecular measures may add precision to the determination of infectious and inflammatory outcomes following courses of inhaled antimicrobial therapies. Clinical Trials.gov Identifier: NCT01736839.


Subject(s)
Cystic Fibrosis , Pseudomonas Infections , Administration, Inhalation , Anti-Bacterial Agents/therapeutic use , Biomarkers , Cystic Fibrosis/complications , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Humans , Inflammation/drug therapy , Prospective Studies , Pseudomonas Infections/complications , Pseudomonas Infections/drug therapy , Pseudomonas aeruginosa/genetics , RNA, Messenger , Sputum/microbiology
19.
Respir Res ; 23(1): 88, 2022 Apr 09.
Article in English | MEDLINE | ID: mdl-35397561

ABSTRACT

BACKGROUND: Most phenotyping paradigms in sarcoidosis are based on expert opinion; however, no paradigm has been widely adopted because of the subjectivity in classification. We hypothesized that cluster analysis could be performed on common clinical variables to define more objective sarcoidosis phenotypes. METHODS: We performed a retrospective cohort study of 554 sarcoidosis cases to identify distinct phenotypes of sarcoidosis based on 29 clinical features. Model-based clustering was performed using the VarSelLCM R package and the Integrated Completed Likelihood (ICL) criteria were used to estimate number of clusters. To identify features associated with cluster membership, features were ranked based on variable importance scores from the VarSelLCM model, and additional univariate tests (Fisher's exact test and one-way ANOVA) were performed using q-values correcting for multiple testing. The Wasfi severity score was also compared between clusters. RESULTS: Cluster analysis resulted in 6 sarcoidosis phenotypes. Salient characteristics for each cluster are as follows: Phenotype (1) supranormal lung function and majority Scadding stage 2/3; phenotype (2) supranormal lung function and majority Scadding stage 0/1; phenotype (3) normal lung function and split Scadding stages between 0/1 and 2/3; phenotype (4) obstructive lung function and majority Scadding stage 2/3; phenotype (5) restrictive lung function and majority Scadding stage 2/3; phenotype (6) mixed obstructive and restrictive lung function and mostly Scadding stage 4. Although there were differences in the percentages, all Scadding stages were encompassed by all of the phenotypes, except for phenotype 1, in which none were Scadding stage 4. Clusters 4, 5, 6 were significantly more likely to have ever been on immunosuppressive treatment and had higher Wasfi disease severity scores. CONCLUSIONS: Cluster analysis produced 6 sarcoidosis phenotypes that demonstrated less severe and severe phenotypes. Phenotypes 1, 2, 3 have less lung function abnormalities, a lower percentage on immunosuppressive treatment and lower Wasfi severity scores. Phenotypes 4, 5, 6 were characterized by lung function abnormalities, more parenchymal abnormalities, an increased percentage on immunosuppressive treatment and higher Wasfi severity scores. These data support using cluster analysis as an objective and clinically useful way to phenotype sarcoidosis subjects and to empower clinicians to identify those with more severe disease versus those who have less severe disease, independent of Scadding stage.


Subject(s)
Sarcoidosis , Cluster Analysis , Humans , Phenotype , Retrospective Studies , Sarcoidosis/diagnosis , Sarcoidosis/epidemiology , Sarcoidosis/genetics , Severity of Illness Index
20.
J Med Imaging (Bellingham) ; 9(2): 026001, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35274026

ABSTRACT

Purpose: An open question in deep clustering is how to explain what in the image is driving the cluster assignments. This is especially important for applications in medical imaging when the derived cluster assignments may inform decision-making or create new disease subtypes. We develop cluster activation mapping (CLAM), which is methodology to create localization maps highlighting the image regions important for cluster assignment. Approach: Our approach uses a linear combination of the activation channels from the last layer of the encoder within a pretrained autoencoder. The activation channels are weighted by a channelwise confidence measure, which is a modification of score-CAM. Results: Our approach performs well under medical imaging-based simulation experiments, when the image clusters differ based on size, location, and intensity of abnormalities. Under simulation, the cluster assignments were predicted with 100% accuracy when the number of clusters was set at the true value. In addition, applied to computed tomography scans from a sarcoidosis population, CLAM identified two subtypes of sarcoidosis based purely on CT scan presentation, which were significantly associated with pulmonary function tests and visual assessment scores, such as ground-glass, fibrosis, and honeycombing. Conclusions: CLAM is a transparent methodology for identifying explainable groupings of medical imaging data. As deep learning networks are often criticized and not trusted due to their lack of interpretability, our contribution of CLAM to deep clustering architectures is critical to our understanding of cluster assignments, which can ultimately lead to new subtypes of diseases.

SELECTION OF CITATIONS
SEARCH DETAIL
...